A phenomenological model for selective growth of semiconducting single-walled carbon nanotubes based on catalyst deactivation.

نویسندگان

  • Shunsuke Sakurai
  • Maho Yamada
  • Hiroko Sakurai
  • Atsuko Sekiguchi
  • Don N Futaba
  • Kenji Hata
چکیده

A method for the selective semiconducting single-walled carbon nanotube (SWCNT) growth over a continuous range from 67% to 98%, within the diameter range of 0.8-1.2 nm, by the use of a "catalyst conditioning process" prior to growth is reported. Continuous control revealed an inverse relationship between the selectivity and the yield as evidenced by a 1000-times difference in yield between the highest selectivity and non-selectivity. Further, these results show that the selectivity is highly sensitive to the presence of a precise concentration of oxidative and reductive gases (i.e. water and hydrogen), and the highest selectivity occurred along the border between the conditions suitable for high yield and no-growth. Through these results, a phenomenological model has been constructed to explain the inverse relationship between yield and selectivity based on catalyst deactivation. We believe our model to be general, as the fundamental mechanisms limiting selective semiconducting SWCNT growth are common to the previous reports of limited yield.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes on Substrate by Europium Oxide

In this paper, we have demonstrated that europium oxide (Eu(2)O(3)) is a new type of active catalyst for single-walled carbon nanotubes (SWNTs) growth under suitable conditions. Both random SWNT networks and horizontally aligned SWNT arrays are efficiently grown on silicon wafers. The density of the SWNT arrays can be altered by the CVD conditions. This result further provides the experimental ...

متن کامل

Growth of semiconducting single-walled carbon nanotubes by using ceria as catalyst supports.

The growth of semiconducting single-walled carbon nanotubes (s-SWNTs) on flat substrates is essential for the application of SWNTs in electronic and optoelectronic devices. We developed a flexible strategy to selectively grow s-SWNTs on silicon substrates using a ceria-supported iron or cobalt catalysts. Ceria, which stores active oxygen, plays a crucial role in the selective growth process by ...

متن کامل

Towards Type-Selective Carbon Nanotube

7 Carbon nanotubes have been intensively researched for electronic applications, driven 8 by their excellent electronic properties, with the goals being control and 9 reproducibility of growth, semiconducting/metallic type selectivity and maintaining 10 high quality of carbon nanotubes, in a process that is temperature-compatible with the 11 electronics. Photo-thermal chemical vapour deposition...

متن کامل

A PARAMETRIC STUDY ON THE GROWTH OF SINGLE-WALLED CARBON NANOTUBES OVER CO-MO/MGO NANOCATALYST IN A FLUIDIZED BED REACTOR BY CCVD METHOD

Single-walled carbon nanotubes (SWNTs) with high yield and quality were synthesized using chemical vapor deposition (CVD) over Co-Mo/ MgO nanocatalyst in a fluidized bed reactor. Different parameters such as temperature, the ratio of hydrocarbon source to hydrogen, the flow rate of gas, growth time, the size of catalyst particles, heating rate, and the kind of hydrocarbon source were examined t...

متن کامل

Selective growth of well-aligned semiconducting single-walled carbon nanotubes.

High-density arrays of perfectly aligned single-walled carbon nanotubes (SWNTs) consisting almost exclusively of semiconducting nanotubes were grown on ST-cut single crystal quartz substrates. Raman spectroscopy together with electrical measurements of field effect transistors (FETs) fabricated from the as-grown samples showed that over 95% of the nanotubes in the arrays are semiconducting. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 2016